skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Huang, Libai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 11, 2025
  2. An array of radiatively coupled emitters provides a platform for generating, storing and manipulating quantum light. However, the simultaneous positioning and tuning of several lifetime-limited emitters into resonance remains a challenge. Here we report the creation of superradiant and subradiant entangled states in pairs of lifetime-limited and subwavelength-spaced organic molecules by permanently shifting them into resonance with laser-induced tuning. The molecules are embedded as defects in an organic nanocrystal. The pump light redistributes charges in the nanocrystal and dramatically increases the likelihood of resonant molecules. The frequency spectra, lifetimes and second-order correlation functions agree with a simple quantum model. This scalable tuning approach with organic molecules provides a pathway for observing collective quantum phenomena in subwavelength arrays of quantum emitters. 
    more » « less
  3. Layered metal-halide perovskites, or two-dimensional perovskites, can be synthesized in solution, and their optical and electronic properties can be tuned by changing their composition. We report a molecular templating method that restricted crystal growth along all crystallographic directions except for [110] and promoted one-dimensional growth. Our approach is widely applicable to synthesize a range of high-quality layered perovskite nanowires with large aspect ratios and tunable organic-inorganic chemical compositions. These nanowires form exceptionally well-defined and flexible cavities that exhibited a wide range of unusual optical properties beyond those of conventional perovskite nanowires. We observed anisotropic emission polarization, low-loss waveguiding (below 3 decibels per millimeter), and efficient low-threshold light amplification (below 20 microjoules per square centimeter). 
    more » « less